SU-E-T-567: Improve Dose Conformity with IMRT Using Shorter Source to Tumor Distance.
نویسندگان
چکیده
PURPOSE To reduce the potential of late toxicity (tissue necrosis and cognitive function loss) from brain radiotherapy, we studied a novel planning technique for MLC-equipped linear accelerators (LINACS) that reduces the high doses delivered outside the PTV, enhancing radiation dose conformity. METHODS The feasibility of improving dose conformity by using variable source-to-tumor distances was tested on brain CT datasets with tumor contours representing solitary lesions and an example with two lesions. For the single tumor cases, different tumor volumes from 2 to 83 cc were explored, while an example double lesion had a total volume of 13 cc. Three different source-to-axis distances (SADs), 100, 80 and 65 cm, were used to create separate 5-field IMRT plans with the same beam angles for all SADs. For each example, the PTV dose coverage and critical organ doses were constrained to be the same, except for the normal brain doses that were determined by the dose conformity. High dose spillage outside the PTV was quantified by R50 (the ratio between the 50% isodose volume and the PTV), and the V12 (volume of normal brain receiving 12Gy or higher). RESULTS R50 decreased monotonically with shorter SAD for all examples. Compared with 100 cm SAD, average R50 reductions of 13% and 19% were observed with 80 and 65 cm SAD respectively. Improved conformity was more notable on smaller lesions and the multiple lesion case. V12 also decreases significantly with shorter SAD. CONCLUSIONS Improvement in dose conformity can be achieved on existing LINACS by reducing the treatment distance for each IMRT field. Sharper beam penumbra and smaller projected MLC leaf width contribute to the improvement. Precise delivery of non- isocentric beams can be challenging on traditional LINACS, but the problem is much more manageable on machines with precise robotic gantry and couch capabilities.
منابع مشابه
Assessment and Comparison of Homogeneity and Conformity Indexes in Step-and-Shoot, Compensator-Based Intensity Modulated Radiation Therapy (IMRT) and Three-Dimensional Conformal Radiation Therapy (3D CRT) in Prostate Cancer
Introduction: Intensity modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D CRT) are two treatment modalities in prostate cancer, which provide acceptable dose distribution in tumor region with sparing the surrounding normal tissues. IMRT is based on inverse planning optimization; in which, intensity of beams is modified by using multileaf c...
متن کاملIntensity modulated radiation therapy (IMRT) technique for left breast cancer by different numbers of beam fields
Background: Intensity Modulated Radiotherapy (IMRT) can improve radiotherapy (RT) results by improving healthy tissue sparing. Additionally, IMRT provides more consistent dose deliveries and suppresses secondary tumor formation. RT is a principal treatment in breast cancer (BC). Aim: To evaluate the outcome of the Radiotherapy Plans (RTP) that use IMRT technique to left breast and other organs,...
متن کاملSU-E-T-584: Dosimetric Comparison Between Static IMRT and VMAT for a Four- Lesion Brain Treatment.
PURPOSE Sparing brain volume is the goal when designing plans for multiple brain tumors. We compared dose distributions for tumor and normal tissues using VAMT and static IMRT. METHODS A patient presented with recurrent meningioma with 4 lesions identified. The greatest dimensions for the tumors were 0.4 to 2.0 cm. The tumor sizes and locations can be treated with a single plan with 1.8 Gy/fr...
متن کاملA dose‐volume‐based tool for evaluating and ranking IMRT treatment plans
External beam radiotherapy is commonly used for patients with cancer. While tumor shrinkage and palliation are frequently achieved, local control and cure remain elusive for many cancers. With regard to local control, the fundamental problem is that radiotherapy-induced normal tissue injury limits the dose that can be delivered to the tumor. While intensity-modulated radiation therapy (IMRT) al...
متن کاملEvaluation of the effects of dental filling material artifacts on IMRT treatment planning in patient with nasopharyngeal cancer
Background: Presence of artifacts, caused by dental filling high-Z materials (DFM), on intensity-modulated radiation therapy (IMRT) treatment plan CT images may lead to uncertainty in head and neck calculated dose distributions. Hence, the purpose of this study was to investigate the effects of DFM on the IMRT calculated dose distribution and consequent radiobiological derived outcomes for naso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 39 6Part19 شماره
صفحات -
تاریخ انتشار 2012